Part Number Hot Search : 
TC35273 MV71005 MDS150 HAT1044M RC0031E 2N6589 2N6589 NKD60
Product Description
Full Text Search
 

To Download MT8LSDT3264A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 256MB / 512MB (x64) 168-PIN SDRAM DIMMs
SYNCHRONOUS DRAM MODULE
Features
* PC100- and PC133-compliant * JEDEC-standard 168-pin, dual in-line memory module (DIMM) * Unbuffered * 256MB (32 Meg x 64), 512MB (64 Meg x 64) * Single +3.3V 0.3V power supply * Fully synchronous; all signals registered on positive edge of system clock * Internal pipelined operation; column address can be changed every clock cycle * Internal SDRAM banks for hiding row access/precharge * Programmable burst lengths: 1, 2, 4, 8, or full page * Auto Precharge, including Concurrent Auto Precharge, and Auto Refresh Modes * 64ms, 8,192 cycle Auto Refresh cycle * Self Refresh Mode * LVTTL-compatible inputs and outputs * Serial Presence-Detect (SPD)
MT8LSDT3264A(I) - 256MB MT16LSDT6464A(I) - 512MB
For the latest data sheet, please refer to the Micron Web site: www.micron.com/moduleds
Figure 1: 168-Pin DIMM (MO-161)
Standard
Low Profile
OPTIONS
* Package Unbuffered 168-pin DIMM (gold) * Operating Temperature Range Commercial (0C to +70C) Industrial (-40C to +85C)1 * Memory Clock/CAS Latency (133 MHz)/CL = 2 (133 MHz)/CL = 3 (100 MHz)/CL = 2
NOTE:
MARKING
A
G None I -13E -133 -10E
Table 2:
MODULE MARKINGS -13E -133 -10E
Timing parameters
PC100 CL - tRCD - tRP 2-2-2 2-2-2 2-2-2 PC133 CL - tRCD - tRP 2-2-2 3-3-3 NA
Table 3:
Part Numbers
SYSTEM CONFIGURATION BUS SPEED 32 Meg x 64 32 Meg x 64 32 Meg x 64 64 Meg x 64 64 Meg x 64 64 Meg x 64 133 MHz 133 MHz 100 MHz 133 MHz 133 MHz 100 MHz
PARTNUMBER1 MT8LSDT3264AG-13E_ MT8LSDT3264AG(I)-133_ MT8LSDT3264AG-10E_ MT16LSDT6464AG-13E_ MT16LSDT6464AG(I)-133_ MT16LSDT6464AG-10E_
NOTE:
1. Consult Micron for availability; Industrial Temperature Option available in -133 speed only.
Table 1:
Address Table
256MB MODULE 8K 4 (BA0, BA1) 32 Meg x 8 8K (A0-A12) 1K (A0-A9) 1 (S0,S2) 512MB MODULE 8K 4 (BA0, BA1) 32 Meg x 8 8K (A0-A12) 1K (A0-A9) 2 (S0,S2; S1,S3)
Refresh Count Device Banks Device Configuration Row Addressing Column Addressing Module Banks
1. The designators for component and PCB revision are the last two characters of each part number. Consult factory for current revision codes. Example: MT8LSDT3264AG-133B1.
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
1
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Table 4: Pin Assignment, Standard PCB (168-Pin DIMM Front)
22 NC 43 VSS 64 23 VSS 44 NC 65 24 NC 45 S2# 66 25 NC 46 DQMB2 67 26 VDD 47 DQMB3 68 27 WE# 48 NC 69 28 DQMB0 49 VDD 70 29 DQMB1 50 NC 71 30 S0# 51 NC 72 31 NC 52 NC 73 32 VSS 53 NC 74 33 A0 54 VSS 75 34 A2 55 DQ16 76 35 A4 56 DQ17 77 36 A6 57 DQ18 78 37 A8 58 DQ19 79 38 A10 59 VDD 80 39 BA1 60 DQ20 81 40 VDD 61 NC 82 41 VDD 62 NC 83 42 CK0 63 CKE1 84 VSS DQ21 DQ22 DQ23 VSS DQ24 DQ25 DQ26 DQ27 VDD DQ28 DQ29 DQ30 DQ31 VSS CK2 NC NC SDA SCL VDD
Table 5:
Pin Assignment, Standard PCB (168-Pin DIMM Back)
106 NC 127 VSS 148 107 VSS 128 CKE0 149 108 NC 129 S3# 150 109 NC 130 DQMB6 151 110 VDD 131 DQMB7 152 111 CAS# 132 NC 153 112 DQMB4 133 VDD 154 113 DQMB5 134 NC 155 114 S1# 135 NC 156 115 RAS# 136 NC 157 116 VSS 137 NC 158 117 A1 138 VSS 159 118 A3 139 DQ48 160 119 A5 140 DQ49 161 120 A7 141 DQ50 162 121 A9 142 DQ51 163 122 BA0 143 VDD 164 123 A11 144 DQ52 165 124 VDD 145 NC 166 125 CK1 146 NC 167 126 A12 147 NC 168 VSS DQ53 DQ54 DQ55 VSS DQ56 DQ57 DQ58 DQ59 VDD DQ60 DQ61 DQ62 DQ63 VSS CK3 NC SA0 SA1 SA2 VDD
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 VSS DQ0 DQ1 DQ2 DQ3 VDD DQ4 DQ5 DQ6 DQ7 DQ8 VSS DQ9 DQ10 DQ11 DQ12 DQ13 VDD DQ14 DQ15 NC
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 VSS DQ32 DQ33 DQ34 DQ35 VDD DQ36 DQ37 DQ38 DQ39 DQ40 VSS DQ41 DQ42 DQ43 DQ44 DQ45 VDD DQ46 DQ47 NC
Figure 2: PIN Locations (168-PIN DIMM)
Front View
U1 U2 U3 U4 U6 U7 U8 U9
U10
PIN 1
PIN 41
PIN 84
Back View (Populated only for 512MB module)
U11 U12 U13 U14 U16 U17 U18 U19
PIN 168 Indicates a VDD pin
PIN125 Indicates a VSS pin
PIN 85
See Figure 10, 256MB Module Dimensions, on page 23 and Figure 11, 512MB Module Dimensions, on page 24 for module dimensions.
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
2
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Table 6: Pin Descriptions
SYMBOL RAS#, CAS#, WE# CK0-CK3 TYPE Input Input DESCRIPTION Command Inputs: RAS#, CAS#, and WE# (along with S#) define the command being entered. Clock: CK is driven by the system clock. All SDRAM input signals are sampled on the positive edge of CK. CK also increments the internal burst counter and controls the output registers. Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CK signal. Deactivating the clock provides PRECHARGE POWER-DOWN and SELF REFRESH operation (all device banks idle) or CLOCK SUSPEND OPERATION (burst access in progress). CKE is synchronous except after the device enters power- down and self refresh modes, where CKE becomes asynchronous until after exiting the same mode. The input buffers, including CK, are disabled during power-down and self refresh modes, providing low standby power. Chip Select: S# enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when S# is registered HIGH. S# is considered part of the command code. Input/Output Mask: DQMB is an input mask signal for write accesses and an output enable signal for read accesses. Input data is masked when DQMB is sampled HIGH during a WRITE cycle. The output buffers are placed in a High-Z state (twoclock latency) when DQMB is sampled HIGH during a READ cycle. Bank Address: BA0 and BA1 define to which device bank the ACTIVE, READ, WRITE, or PRECHARGE command is being applied. Address Inputs: Provide the row address for ACTIVE commands, and the column address and auto prcharge bit (A10) for READ/WRITE commands, to select one location out of the memory arrary in the respective device bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one device bank (A10 LOW, device bank selected by BA0, BA1) or all device banks (A10 HIGH). The address inputs also provide the op-code during a MODE REGISTER SET command. Serial Clock for Presence-Detect: SCL is used to synchronize the presence-detect data transfer to and from the module. Presence-Detect Address Inputs: These pins are used to configure the presence-detect device. Data I/O: Data bus. Pin numbers may not correlate with symbols. Refer to the Pin Assignment table for pin number and symbol information. PIN NUMBERS 27, 111, 115 42, 79, 125, 163
63, 128
CKE0, CKE1
Input
30, 45,114, 129
S0# -S3#
Input
28, 29, 46, 47, 112, 113, 130, 131
DQMB0-DQMB7
Input
39, 122
BA0, BA1
Input
33 - 38, 117 - 121, 123, 126
A0-A12
Input
83 165-167 2-5, 7-11, 13-17, 19-20, 55-58, 60, 65-67, 69-72, 74-77, 86-89, 91-95, 97-101, 103-104, 139-142, 144, 149-151, 153-156,158-161 82
SCL SA0-SA2 DQ0-DQ63
Input Input Input/ Output
SDA
Input/ Serial Presence-Detect Data: SDA is a bidirectional pin used to Output transfer addresses and data into and out of the presencedetect portion of the module.
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
3
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Table 6: Pin Descriptions (Continued)
SYMBOL VDD TYPE Supply DESCRIPTION Power Supply: +3.3V 0.3V. Pin numbers may not correlate with symbols. Refer to the Pin Assignment table for pin number and symbol information. PIN NUMBERS 6, 18, 26, 40, 41, 49, 59, 73, 84, 90, 102, 110, 124, 133, 143, 157, 168 1, 12, 23, 32, 43, 54, 64, 68, 78, 85, 96, 107, 116, 127, 138, 148, 152, 162 21-22, 24-25, 31, 44, 48, 50-53, 61-62, 80, 81, 105-106, 108-109, 132, 134-137, 145-147, 164
VSS
Supply
Ground.
NC
-
Not Connected: These pins are not connected on these modules.
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
4
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Figure 3: Functional Block Diagram Single Bank Modules
S0# DQMB0 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQMB1 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 S2# DQMB2 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DQMB3 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 RAS# CAS# CKE0 WE# A0-A11 BA0 BA1 VDD VSS DQM CS# DQ DQ DQ DQ U9 DQ DQ DQ DQ RAS#: SDRAMs CAS#: SDRAMs CKE0: SDRAMs WE#: SDRAMs A0-A11: SDRAMs BA0: SDRAMs BA1: SDRAMs SDRAMs SDRAMs SPD U10 A0 A1 A2 SA0 SA1 SA2
Notes: All resistor values are 10W unless otherwise specified. Per industry standard, Micron modules use various component speed grades as referenced in the module part numbering guide at: www.micron.com/numberguide. SDRAMs = MT48LC32M8A2TG, Commercial Temperature SDRAMs = MT48LC32M8A2TG-75 IT, Industrial Temperature
DQMB4 DQM CS# DQ DQ DQ DQ U1 DQ DQ DQ DQ DQM CS# DQ DQ DQ DQ U3 DQ DQ DQ DQ DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DQMB5 DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DQM CS# DQ DQ DQ U4 DQ DQ DQ DQ DQ DQM CS# DQ DQ DQ DQ U2 DQ DQ DQ DQ
DQMB6 DQM CS# DQ DQ DQ DQ U7 DQ DQ DQ DQ DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DQMB7 DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 DQM CS# DQ DQ DQ DQ U8 DQ DQ DQ DQ DQM CS# DQ DQ DQ DQ U6 DQ DQ DQ DQ
CK0
U1 U2 U3 U4 U5 U6 U7 U8 U9
CK2
3.3pF
CK1, CK3 SDA
SCL WP
10pF
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
5
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Figure 4: Functional Block Diagram Dual Bank Modules
S0# S1# DQMB0 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQMB1 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 S2# S3# DQMB2 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DQMB3 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 DQM CS# DQ DQ DQ DQ U9 DQ DQ DQ DQ VDD CKE1 CKE0 CAS# RAS# WE# A0-A11 BA0 BA1 VDD VSS
10K
DQMB4 DQM CS# DQ DQ DQ DQ U1 DQ DQ DQ DQ DQM CS# DQ DQ DQ DQ U3 DQ DQ DQ DQ DQM CS# DQ DQ DQ DQ U19 DQ DQ DQ DQ DQM CS# DQ DQ DQ DQ U17 DQ DQ DQ DQ DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DQMB5 DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DQM CS# DQ DQ DQ DQ U4 DQ DQ DQ DQ DQM CS# DQ DQ DQ DQ U16 DQ DQ DQ DQ DQM CS# DQ DQ DQ U2 DQ DQ DQ DQ DQ DQM CS# DQ DQ DQ DQ U18 DQ DQ DQ DQ
DQMB6 DQM CS# DQ DQ DQ DQ U7 DQ DQ DQ DQ DQM CS# DQ DQ DQ DQ U13 DQ DQ DQ DQ DQM CS# DQ DQ DQ DQ U11 DQ DQ DQ DQ DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DQMB7 DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 DQM CS# DQ DQ DQ DQ U8 DQ DQ DQ DQ U1 U2 U3 U4 U5 U6 U7 U8 U9 DQM CS# DQ DQ DQ DQ U12 DQ DQ DQ DQ U15 U16 U17 U18 U19 U11 U12 U13 U14 DQM CS# DQ DQ DQ DQ U6 DQ DQ DQ DQ DQM CS# DQ DQ DQ DQ U14 DQ DQ DQ DQ
CKE: SDRAMs U11-U19 CKE: SDRAMs U1-U9 CAS#: SDRAMs RAS#: SDRAMs WE#: SDRAMs A0-A11: SDRAMs BA0: SDRAMs BA1: SDRAMs SDRAMs SDRAMs SCL WP CK2
3.3pF
CK0
CK1
CK3
3.3pF
SPD U10 A0 A1 A2 SA0 SA1 SA2
SDA
Notes: All resistor values are 10W unless otherwise specified. Per industry standard, Micron modules use various component speed grades as referenced in the module part numbering guide at: www.micron.com/numberguide.
SDRAMs = MT48LC32M8A2TG, Commercial Temperature SDRAMs = MT48LC32M8A2TG-75 IT, Industrial Temperature
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
6
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
General Description
The MT8LSDT13264A(I) and MT16LSDT6464A(I) are high-speed CMOS, dynamic random-access, 256MB and 512MB memory modules organized in x64 configurations. These modules use internally configured quad-bank SDRAMS with a synchronous interface (all signals are registered on the positive edge of the clock signals CK0-CK3). Read and write accesses to the SDRAM modules are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the device bank and row to be accessed (BA0, BA1 select the device bank; A0-A12 select the device row). The address bits registered coincident with the READ or WRITE command are used to select the starting column location for the burst access. The modules provide for programmable READ or WRITE burst length of 1, 2, 4, or 8 locations, or the full page, with a burst terminate option. An AUTO PRECHARGE function may be enabled to provide a selftimed row precharge that is initiateda the end of the burst sequence. The modules use an internal pipelined architecture to achieve high-speed operation. This architecture is compatible with the 2n rule of prefetch architectures, but it also allows the column address to be changed on every clock cycle to achieve a high-speed, fully random access. Precharging one device bank while accessing one of the other three device banks will hide the precharge cycles and provide seamless, high-speed, random-access operation. The modules are designed to operate in 3.3V, lowpower memory systems. An auto refresh mode is provided, along with a power-saving, power-down mode. All inputs and outputs are LVTTL-compatible. SDRAM modules offer substantial advances in DRAM operating performance, including the ability to syncronously burst data at a high data rate with automatic column-address generation, the ability to interleave between intenal banks in order to hide precharge time and the capability to randomly change column addresses on each clock cycle during a burst access. For more information regarding SDRAM operation, refer to the 256Mb SDRAM component data sheet.
Serial Presence-Detect Operation
These modules incorporate serial presence-detect (SPD). The SPD function is implemented using a 2,048-bit EEPROM. This nonvolatile storage device contains 256 bytes. The first 128 bytes can be programmed by Micron to identify the module type and various SDRAM organizations and timing parameters. The remaining 128 bytes of storage are available for use by the customer. System READ/WRITE operations between the master (system logic) and the slave EEPROM device (DIMM) occur via a standard I2C bus using the DIMM's SCL (clock) and SDA (data) signals, together with SA (2:0), which provide eight unique DIMM/EEPROM addresses.
SDRAM Functional Description
In general, the 256Mb SDRAMs are quad-bank DRAMs that operate at 3.3V and include a synchronous interface (all signals are registered on the positive edge of the clock signal, CLK). The four banks of the x8 configured devices used for these modules are configured as 8,192 bit-rows by 1,024 bit-columns, by 8 input/output bits. Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the active command are used to select the device bank and row to be accessed; BA0 and BA1 select the device bank, A0-A12 select the device row. The address bits A0-A9 registered coincident with the READ or WRITE command are used to select the starting device column location for the burst access. Prior to normal operation, the SDRAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command descriptions and device operation.
Initialization
SDRAMS must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operation. Once power is applied to VDD and VDDQ (simultaneously) and the clock is stable (stable clock is defined as a signal cycling within timing constrants specified for the clock pin), the SDRAM requires a 100s delay prior to issuing any command other than a COM-
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
7
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
MAND INHIBIT or NOP Starting at some point during . this 100s period and continuing at least through the end of this period, COMMAND INHIBIT or NOP commands should be applied. Once the 100s delay has been satisfied with at least one COMMAND INHIBIT or NOP command having been applied, a PRECHARGE command should be applied. All device banks must then be precharged, thereby placing the device in the all banks idle state. Once in the idle state, two AUTO REFRESH cycles must be performed. After the AUTO REFRESH cycles are complete, the SDRAM is ready for mode register programming. Because the mode register will power up in an unknown state, it should be loaded prior to applying any operational command. Reserved states should not be used, as unknown operation or incompatibility with future versions may result. When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block, meaning that the burst will wrap within the block if a boundary is reached, as shown in the Burst Definition Table. The block is uniquely selected by A1- A9 when the burst length is set to two; A2-A9 when the burst length is set to four; and by A3-A9 when the burst length is set to eight. The remaining (least significant) address bit(s) is (are) used to select the starting location within the block. Full-page bursts wrap within the page if the boundary is reached, as shown in Table 7, Burst Definitions, on page 9.
Mode Register Definition
The mode register is used to define the specific mode of operation of the SDRAM. This definition includes the selection of a burst length, a burst type, a CAS latency, an operating mode and a write burst mode, as shown in Figure 5, Mode Register Definition Diagram, on page 8. The mode register is programmed via the LOAD MODE REGISTER command and will retain the stored information until it is programmed again or the device loses power. Mode register bits M0-M2 specify the burst length, M3 specifies the type of burst (sequential or interleaved), M4-M6 specify the CAS latency, M7 and M8 specify the operating mode, M9 specifies the write burst mode, and M10 and M11 are reserved for future use. The mode register must be loaded when all device banks are idle, and the controller must wait the specified time before initiating the subsequent operation. Violating either of these requirements will result in unspecified operation.
Burst Type
Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the burst type and is selected via bit M3. The ordering of the accesses within a burst is determined by the burst length, the burst type, and the starting column adress, as shown in Table 7, Burst Definitions, on page 9.
Burst Length
Read and write accesses to the SDRAM are burst oriented, with the burst length being programmable, as shown in Figure 5, Mode Register Definition Diagram, on page 8. The burst length determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 1, 2, 4, or 8 locations are available for both the sequential and the interleaved burst types, and a full-page burst is available for the sequential type. The full-page burst is used in conjunction with the BURST TERMINATE command to generate arbitrary burst lengths.
Figure 5: Mode Register Definition
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
8
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Diagram Table 7:
BURST LENGTH
Burst Definitions
STARTING COLUMN ADDRESS ORDER OF ACCESSES WITHIN A BURST TYPE = SEQUENTIAL TYPE = INTERLEAVED 0-1 1-0 0-1-2-3 1-0-3-2 2-3-0-1 3-2-1-0 0-1-2-3-4-5-6-7 1-0-3-2-5-4-7-6 2-3-0-1-6-7-4-5 3-2-1-0-7-6-5-4 4-5-6-7-0-1-2-3 5-4-7-6-1-0-3-2 6-7-4-5-2-3-0-1 7-6-5-4-3-2-1-0 Not Supported
2
4
8
Full Page (y)
NOTE:
A0 0 1 A1 A0 0 0 0 1 1 0 1 1 A2 A1 A0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 n= A0-A11/9/8 (location 0 - y)
0-1 1-0 0-1-2-3 1-2-3-0 2-3-0-1 3-0-1-2 0-1-2-3-4-5-6-7 1-2-3-4-5-6-7-0 2-3-4-5-6-7-0-1 3-4-5-6-7-0-1-2 4-5-6-7-0-1-2-3 5-6-7-0-1-2-3-4 6-7-0-1-2-3-4-5 7-0-1-2-3-4-5-6 Cn, Cn+1, Cn+2 Cn+3, Cn+4... ...Cn-1, Cn...
1. For full-page accesses: y = 1,024 2. For a burst length of two, A1-A9 select the block of two burst; A0 selects the starting column within the block. 3. For a burst length of four, A2-A9 select the block of four burst; A0-A1 select the starting column within the block. 4. For a burst length of eight, A3-A9 select the block of eight burst; A0-A2 select the starting column within the block. 5. For a full-page burst, the full row is selected and A0-A9 select the starting column. 6. Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block. 7. For a burst length of one, A0-A9 select the unique column to be accessed, and Mode Register bit M3 is ignored. For a full-page burst, the full row is selected and A0-A8 select the starting column.
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
9
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
CAS Latency
The CAS latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first piece of output data. The latency can be set to two or three clocks. If a READ command is registered at clock edge n, and the latency is m clocks, the data will be available by clock edge n + m. The DQs will start driving as a result of the clock edge one cycle earlier (n + m - 1), and provided that the relevant access times are met, the data will be valid by clock edge n + m. For example, assuming that the clock cycle time is such that all relevant access times are met, if a READ command is registered at T0 and the latency is programmed to two clocks, the DQs will start driving after T1 and the data will be valid by T2, as shown in Figure 6, CAS Latency Diagram. Table 8, CAS Latency Table, indicates the operating frequencies at which each CAS latency setting can be used. Reserved states should not be used as unknown operation or incompatibility with future versions may result.
Operating Mode
The normal operating mode is selected by setting M7 and M8 to zero; the other combinations of values for M7 and M8 are reserved for future use and/or test modes. The programmed burst length applies to both READ and WRITE bursts. Test modes and reserved states should not be used because unknown operation or incompatibility with future versions may result.
Write Burst Mode
When M9 = 0, the burst length programmed via M0- M2 applies to both READ and WRITE bursts; when M9 = 1, the programmed burst length applies to READ bursts, but write accesses are single-location (nonburst) accesses.
Table 8:
CAS Latency Table
ALLOWABLE OPERATING CLOCK FREQUENCY (MHZ)
Figure 6: CAS Latency Diagram
T0 CLK COMMAND T1 T2 T3
SPEED -13E -133 -10E
CAS LATENCY = 2 133 100 100
CAS LATENCY = 3 143 133 NA
READ
NOP tLZ
NOP tOH DOUT
DQ tAC CAS Latency = 2
T0 CLK COMMAND
T1
T2
T3
T4
READ
NOP
NOP tLZ
NOP tOH DOUT
DQ tAC CAS Latency = 3
DON'T CARE UNDEFINED
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
10
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Commands
The Truth Table provides a quick reference of available commands. This is followed by written description of each command. For a more detailed description of commands and operations, refer to the 256Mb SDRAM component data sheet.
Table 9:
Truth Table - SDRAM Commands and DQMB Operation
CS# H L L L L L L L L - - RAS# CAS# WE# DQMB X H L H H H L L L - - X H H L L H H L L - - X H H H L L L H L - - X X X L/H L/H X X X X L H ADDR X X Bank/Row Bank/Col Bank/Col X Code X Op-code - - DQ X X X X Valid Active X X X Active High-Z NOTES
CKE is HIGH for all commands shown except SELF REFRESH; notes appear following the Truth Table NAME (FUNCTION) COMMAND INHIBIT (NOP) NO OPERATION (NOP) ACTIVE (Select bank and activate row) READ (Select bank and column, and start READ burst) WRITE (Select bank and column, and start WRITE burst) BURST TERMINATE PRECHARGE (Deactivate row in bank or banks) AUTO REFRESH or SELF REFRESH (Enter self refresh mode) LOAD MODE REGISTER Write Enable/Output Enable Write Inhibit/Output High-Z
NOTE:
1 2 2
3 4, 5 6 7 7
1. A0-A12 provide row address; BA0-BA1 determine which device bank is made active. 2. A0-A9 provide column address; A10 HIGH enables the auto-precharge feature (nonpersistent), while A10 LOW disables the auto-precharge feature; BA0-BA1 determine which device bank is being read from or written to. 3. A10 LOW: BA0-BA1 determine which device bank is being precharged. A10 HIGH: all device banks are precharged and BA0, BA1 are "Don't Care." 4. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW. 5. Internal refresh counter controls row addressing; all inputs and I/Os are "Don't Care" except for CKE. 6. A0-A11 define the op-code written to the mode register and A12 should be driven LOW. 7. Activates or deactivates the DQs during WRITEs (zero-clock delay) and READs (two-clock delay).
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
11
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Absolute Maximum Ratings
Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operaVoltage on VDD, VDDQ Supply Relative to VSS. . . . . . . . . . . . . . . . . . . . . -1V to +4.6V Voltage on Inputs NC or I/O Pins Relative to VSS. . . . . . . . . . . . . . . . . . . . -1V to +4.6V Operating Temperature TA (Commercial) . . . . . . . . . . . . . . . . .. 0C to +70C TA (Industrial). . . . . . . . . . . . . . . . . .. -40C to +85C tional sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
Storage Temperature (plastic) . . . . . . -55C to +150C Power Dissipation, 256MB . . . . . . . . . . . . . . . . . . . . 8W Power Dissipation, 512MB . . . . . . . . . . . . . . . . . . . 16W
Table 10: DC Electrical Characteristics and Operating Conditions - 256MB Module
Notes: 1, 5, 6; notes appear on page 17; VDD, VDDQ = +3.3V 0.3V PARAMETER/CONDITION SUPPLY VOLTAGE INPUT HIGH VOLTAGE: Logic 1; All inputs INPUT LOW VOLTAGE: Logic 0; All inputs INPUT LEAKAGE CURRENT: Command and Address Any input 0V VIN VDD Inputs, CKE (All other pins not under test = 0V) CK, S# DQ, DQMB OUTPUT LEAKAGE CURRENT: DQ pins are disabled; 0V VOUT VDDQ OUTPUT LEVELS: Output High Voltage (IOUT = -4mA) Output Low Voltage (IOUT = 4mA) SYMBOL VDD, VDDQ VIH VIL II -20 -5 -5 2.4 - 20 5 5 - 0.4 A A A V V MIN 3 2 -0.3 -40 MAX 3.6 VDD + 0.3 0.8 40 UNITS V V V A NOTES 22 22 33
IOZ VOH VOL
33
Table 11: DC Electrical Characteristics and Operating Conditions - 512MB Module
Notes: 1, 5, 6; notes appear on page 17; VDD, VDDQ = +3.3V 0.3V PARAMETER/CONDITION SUPPLY VOLTAGE INPUT HIGH VOLTAGE: Logic 1; All inputs INPUT LOW VOLTAGE: Logic 0; All inputs INPUT LEAKAGE CURRENT: Command and Address Any input 0V VIN VDD Inputs, CKE (All other pins not under test = 0V) CK, S# DQ, DQMB OUTPUT LEAKAGE CURRENT: DQ pins are disabled; 0V VOUT VDDQ OUTPUT LEVELS: Output High Voltage (IOUT = -4mA) Output Low Voltage (IOUT = 4mA) SYMBOL VDD, VDDQ VIH VIL MIN 3 2 -0.3 -80 -20 -10 -10 2.4 - MAX 3.6 VDD + 0.3 0.8 80 20 10 10 - 0.4 UNITS V V V A A A A V V NOTES 22 22 33
II IOZ VOH VOL
33
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
12
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Table 12: IDD Specifications and Conditions - 256MB Module
Notes: 1, 5, 6, 11, 13; notes appear on page 17; VDD, VDDQ = +3.3v 0.3v; SDRAM component values only MAX PARAMETER/CONDITION OPERATING CURRENT: Active Mode; Burst = 2; READ or WRITE; t RC = tRC (MIN) STANDBY CURRENT: Power-Down Mode; All device device banks idle; CKE = LOW STANDBY CURRENT: Active Mode;CKE = HIGH; CS# = HIGH; All device banks active after tRCD met; No accesses in progress OPERATING CURRENT: Burst Mode; Continuous burst; READ or WRITE; All device banks active t AUTO REFRESH CURRENT RFC = tRFC (MIN) CKE = HIGH; CS# = HIGH SELF REFRESH CURRENT: CKE 0.2V
t
SYMBOL IDD1 IDD2 IDD3 IDD4 IDD5 IDD6 IDD7
-13E
-133
-10E
UNITS mA mA mA mA mA mA mA
NOTES 3, 18,19, 22 22 3, 12, 19, 22 3, 18, 19, 22 3, 12 18, 19, 22, 31 4
1,080 1,080 1,080 16 320 16 320 16 320
1,080 1,080 1,080 2,280 2,160 2,160 28 20 28 20 28 20
RFC = 7.8125s
Table 13: IDD Specifications and Conditions - 512MB Module
Notes: 1, 6, 11, 13; notes appear on page 17; VDD, VDDQ = +3.3V 0.3V; SDRAM component values only MAX PARAMETER/CONDITION OPERATING CURRENT: Active Mode; Burst = 2; READ or WRITE; RC = tRC (MIN) STANDBY CURRENT: Power-Down Mode; All device device banks idle; CKE = LOW STANDBY CURRENT: Active Mode; CKE = HIGH; CS# = HIGH; All device banks active after tRCD met; No accesses in progress OPERATING CURRENT: Burst Mode; Continuous burst; READ or WRITE; All device banks active t AUTO REFRESH CURRENT RFC = tRFC (MIN)
t
SYMBOL IDD1a IDD2b IDD3a IDD4a IDD5b IDD6
b
-13E
-133
-10E
UNITS mA mA mA mA mA mA mA
NOTES 3, 18,19, 22 22 3, 12, 19, 22 3, 18, 19, 22 3, 12 18, 19, 22, 31 4
1,096 1,016 1,016 32 336 32 336 32 336
1,096 1,096 1,096 4,560 4,320 4,320 56 40 56 40 56 40
CKE = HIGH; CS# = HIGH SELF REFRESH CURRENT: CKE 0.2V
NOTE:
t
RFC = 7.8125s
IDD7b
a - Value calculated as one module bank in this condition, and all other module banks in Power-Down Mode (IDD2). b - Value calculated reflects all module banks in this condition.
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
13
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Table 14: Capacitance - 256MB Module
Note 2; notes appear on page 17 PARAMETER Input Capacitance: A0-A12, BA0, BA1, RAS#, CAS#, WE# Input Capacitance: CK Input Capacitance: S# Input Capacitance: CKE Input Capacitance: DQMB Input/Output Capacitance: SCL, SA, SDA Input/Output Capacitance: DQ SYMBOL CI1 CI2 CI3 CI4 CI5 CI6 CI0 MIN 20 13.3 10 20 2.5 - 4 MAX 30.4 17.3 15.2 30.4 3.8 10 6 UNITS pF pF pF pF pF pF pF
.
Table 15: Capacitance - 512MB Module
Note 2; notes appear on page 17 PARAMETER Input Capacitance: A0-A12, BA0, BA1, RAS#, CAS#, WE# Input Capacitance: CK Input Capacitance: S# Input Capacitance: CKE Input Capacitance: DQMB Input/Output Capacitance: SCL, SA, SDA Input/Output Capacitance: DQ SYMBOL CI1 CI2 CI3 CI4 CI5 CI6 CIO MIN 40 13.3 10 20 5 - 8 MAX 60.8 17.3 15.2 30.4 7.6 10 12 UNITS pF pF pF pF pF pF pF
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
14
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Table 16: Electrical Characteristics and Recommended AC Operating Conditions
Notes: 5, 6, 8, 9, 11; notes appear on page 17 Module AC timing parameters comply with PC100 and PC133 Design Specs, based on component parameters ACCHARACTERISTICS PARAMETER Access timefrom CLK (pos.edge) Address hold time Address setup time CLK high-level width CLK low-level width Clock cycle time CKE hold time CKE setup time CS#, RAS#, CAS#, WE#, DQM hold time CS#, RAS#, CAS#, WE#, DQM setup time Data-in hold time Data-in setup time Data-out high-impedance time Data-out low-impedance time Data-out hold time (load) Data-out hold time (no load) ACTIVE to PRECHARGE command ACTIVE to ACTIVE command period ACTIVE to READ or WRITE delay Refresh period (8,192 rows) AUTOREFRESH period PRECHARGE command period ACTIVE bank a to ACTIVE bank b command Transition time WRITE recovery time
t t t
-13E SYMBOL CL=3 CL=2
t t
-133 MIN MAX 5.4 6 0.8 1.5 2.5 2.5 7.5 10 0.8 1.5 0.8 1.5 0.8 1.5 1 2 3 3 8 10 1 2 1 2 1 2 5.4 6 1 3 1.8 1 3 1.8 120,000 50 70 20 64 66 20 15 70 20 20 1.2 0.3 MIN
-10E MAX 6 6 UNITS ns ns ns ns ns ns ns ns ns ns ns ns ns ns 6 6 ns ns ns ns ns 120,000 ns ns ns 64 ms ns ns ns 1.2 ns ns 7 24 28 29 10 10 23 23 NOTES 27
MIN
MAX 5.4 5.4
AC(3) AC(2)
t
AH AS CL CH
0.8 1.5 2.5 2.5 7 7.5 0.8 1.5 0.8 1.5 0.8 1.5 5.4 5.4 1 3 1.8 37 60 15 64 66 15 14 0.3 1 CLK + 7ns 14 67 1.2 120,000
t t
t
CL=3 CL = 2
t t
CK(3) CK(2) CKH CKS
t
t
t
CMH CMS DH DS
t t
t
CL = 3 CL = 2
t t
HZ(3) HZ(2)
t t
LZ
OH
OHN RAS RC
t
t
44 66 20
RCD REF RP RFC
t t
t
RRD
t
T
0.3 1 CLK + 7.5ns 15 75
t
WR
Exit SELF REFRESH to ACTIVE command
t
XSR
1 CLK + 7ns 15 80
ns ns
25 20
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
15
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Table 17: AC Functional Characteristics
Notes: 5, 6, 7, 8, 9, 11; notes appear on page 17 PARAMETER READ/WRITE command to READ/WRITE command CKE to clock disable or power-down entry mode CKE to clock enable or power-down exit setup mode DQM to input data delay DQM to data mask during WRITEs DQMto data high-impedance during READs WRITE command to input data delay Data-into ACTIVE command Data-into PRECHARGE command Last data-in to burst STOP command Last data-in to new READ/WRITE command Lastdata-into PRECHARGE command LOADMODEREGISTER command to ACTIVE or REFRESH command Data-out to high-impedance from PRECHARGE CL = 3 command CL = 2 SYMBOL
t t
.
-13E 1 1 1 0 0 2 0 4 2 1 1 2 2 3 2
-133 1 1 1 0 0 2 0 5 2 1 1 2 2 3 2
-10E 1 1 1 0 0 2 0 4 2 1 1 2 2 3 2
UNITS
t t t t t t t t t t t t t t t
NOTES 17 14 14 17 17 17 17 15, 21 16, 21 17 17 16, 21 26 17 17
CCD PED
CK CK CK CK CK CK CK CK CK CK CK CK CK CK CK
CKED
t
t t
DQD DQZ DAL DPL BDL CDL RDL
DQM DWD
t t t t
t t
t
t t t
MRD
ROH(3) ROH(2)
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
16
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Notes
1. All voltages referenced to VSS. 2. This parameter is sampled. VDD, VDDQ = +3.3V; TA = 25C; pin under test biased at 1.4; f = 1 MHz. 3. IDD is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open. 4. Enables on-chip refresh and address counters. 5. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is ensured (Commercial Temperature: 0C TA +70C and Industrial Temperature: -40C TA +85C). 6. An initial pause of 100s is required after power-up, followed by two AUTO REFRESH commands, before proper device operation is ensured. (VDD and VDDQ must be powered up simultaneously. VSS and VSSQ must be at same potential.) The two AUTO REFRESH command wake-ups should be repeated any time the tREF refresh requirement is exceeded. 7. AC characteristics assume tT = 1ns. 8. In addition to meeting the transition rate specification, the clock and CKE must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner. 9. Outputs measured at 1.5V with equivalent load:
Q 50pF
10. tHZ defines the time at which the output achieves the open circuit condition; it is not a reference to VOH or VOL. The last valid data element will meet t OH before going High-Z. 11. AC timing and IDD tests have VIL = 0V and VIH = 3V, with timing referenced to 1.5V crossover point. If the input transition time is longer than 1ns, then the timing is referenced at VIL (MAX) and VIH (MIN) and no longer at the 1.5V crossover point. 12. Other input signals are allowed to transition no more than once every two clocks and are otherwise at valid VIH or VIL levels. 13. IDD specifications are tested after the device is properly initialized. 14. Timing actually specified by tCKS; clock(s) specified as a reference only at minimum cycle rate. 15. Timing actually specified by tWR plus tRP; clock(s) specified as a reference only at minimum cycle rate.
16. Timing actually specified by tWR. 17. Required clocks are specified by JEDEC functionality and are not dependent on any timing parameter. 18. The IDD current will increase or decrease proportionally according to the amount of frequency alteration for the test condition. 19. Address transitions average one transition every two clocks. 20. CLK must be toggled a minimum of two times during this period. 21. Based on tCK = 10ns for -10E, and tCK = 7.5ns for 133 and -13E. 22. VIH overshoot: VIH (MAX) = VDDQ + 2V for a pulse width 3ns, and the pulse width cannot be greater than one third of the cycle rate. VIL undershoot: VIL (MIN) = -2V for a pulse width 3ns. 23. The clock frequency must remain constant (stable clock is defined as a signal cycling within timing constraints specified for the clock pin) during access or precharge states (READ, WRITE, including tWR, and PRECHARGE commands). CKE may be used to reduce the data rate. 24. Auto precharge mode only. The precharge timing budget (tRP) begins 7ns for -13E; 7.5ns for -133 and 7ns for -10E after the first clock delay, after the last WRITE is executed. May not exceed limit set for precharge mode. 25. Precharge mode only. 26. JEDEC and PC100 specify three clocks. 27. tAC for -133/-13E at CL = 3 with no load is 4.6ns and is guaranteed by design. 28. Parameter guaranteed by design. 29. The value of tRAS used in -13E speed grade module SPDs is calculated from tRC - tRP = 45ns. 30. For -10E, CL= 2 and tCK = 10ns; for -133, CL = 3 and tCK = 7.5ns; for -13E, CL = 2 and tCK = 7.5ns. 31. CKE is HIGH during refresh command period t RFC (MIN) else CKE is LOW. The IDD6 limit is actually a nominal value and does not result in a fail value. 32. Leakage number reflects the worst-case leakage possible through the module pin, not what each memory device contributes. 33. Leakage number reflects the worst-case leakage possible through the module pin, not what each memory device contributes.
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
17
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
SPD Clock and Data Conventions
Data states on the SDA line can change only during SCL LOW. SDA state changes during SCL HIGH are reserved for indicating start and stop conditions (as shown in Figure 7 and Figure 8).
SPD Acknowledge
Acknowledge is a software convention used to indicate successful data transfers. The transmitting device, either master or slave, will release the bus after transmitting eight bits. During the ninth clock cycle, the receiver will pull the SDA line LOW to acknowledge that it received the eight bits of data (as shown in Figure 9). The SPD device will always respond with an acknowledge after recognition of a start condition and its slave address. If both the device and a WRITE operation have been selected, the SPD device will respond with an acknowledge after the receipt of each subsequent eight bit word. In the read mode the SPD device will transmit eight bits of data, release the SDA line and monitor the line for an acknowledge. If an acknowledge is detected and no stop condition is generated by the master, the slave will continue to transmit data. If an acknowledge is not detected, the slave will terminate further data transmissions and await the stop condition to return to standby power mode.
SPD Start Condition
All commands are preceded by the start condition, which is a HIGH-to-LOW transition of SDA when SCL is HIGH. The SPD device continuously monitors the SDA and SCL lines for the start condition and will not respond to any command until this condition has been met.
SPD Stop Condition
All communications are terminated by a stop condition, which is a LOW-to-HIGH transition of SDA when SCL is HIGH. The stop condition is also used to place the SPD device into standby power mode.
Figure 7: Data Validity
Figure 8: Definition of Start and Stop
SCL
SCL
SDA
SDA
DATA STABLE DATA CHANGE DATA STABLE
START BIT
STOP BIT
Figure 9: Acknowledge Response From Receiver
SCL from Master
8
9
Data Output from Transmitter
Data Output from Receiver Acknowledge
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
18
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Table 18: EEPROM Device Select Code
The most significant bit (b7) is sent first DEVICE TYPE IDENTIFIER b7 Memory Area Select Code (two arrays) Protection Register Select Code 1 0 b6 0 1 b5 1 1 b4 0 0 CHIP ENABLE b3 SA2 SA2 b2 SA1 SA1 b1 SA0 SA0 RW b0 RW RW
Table 19: EEPROM Operating Modes
MODE Current Address Read RandomAddressRead Sequential Read Byte Write Page Write RW BIT 1 0 1 1 0 0 WC
VIH or VIL VIH or VIL VIH or VIL VIH or VIL
BYTES 1 1 1 1 16
INITIAL SEQUENCE Start, Device Select, RW = 1 Start, Device Select, RW= 0, Address RESTART, Device Select, RW= 1 Similar to Current or Random Address Read START, Device Select, RW = 0 START, Device Select, RW = 0
VIL VIL
Table 20: SERIAL Presence-Detect EEPROM DC Operating Conditions
VDD = +3.3V 0.3V; All voltages referenced to VSS PARAMETER/CONDITION SUPPLY VOLTAGE INPUT HIGH VOLTAGE: Logic 1; All inputs INPUT LOW VOLTAGE: Logic 0; All inputs OUTPUT LOW VOLTAGE: IOUT = 3mA INPUT LEAKAGE CURRENT: VIN = GND to VDD OUTPUT LEAKAGE CURRENT: VOUT = GND to VDD STANDBY CURRENT: SCL = SDA = VDD - 0.3V; All other inputs = GND or 3.3V 10% POWER SUPPLY CURRENT: SCL Clock frequency = 100 KHz SYMBOL VDD VIH VIL VOL ILI ILO ICCS ICC Write ICC Read MIN 3 VDD x 0.7 -1 - - - - - - MAX 3.6 VDD + 0.5 VDD x 0.3 0.4 10 10 30 3 1 UNITS V V V V A A A mA
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
19
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
SPD EEPROM TIMING DIAGRAM
tF t LOW t HIGH tR
SCL
t SU:STA t HD:STA t HD:DAT t SU:DAT t SU:STO
SDA IN
t AA t DH t BUF
SDA OUT
UNDEFINED
Table 21: Serial Presence-Detect EEPROM AC Operating Conditions
VDD = +3.3V 0.3V; All voltages referenced to VSS PARAMETER/CONDITION SCL LOW to SDA data-out valid Time the bus must be free before a new transition can start Data-out hold time SDA and SCL fall time Data-in hold time Start condition hold time ClockHIGHperiod Noise suppression time constant at SCL, SDA inputs Clock LOW period SDA and SCL rise time SCL clock frequency Data-in setup time Start condition setup time Stop condition setup time WRITE cycle time
NOTE:
t t t f t t t
SYMBOL
t t
MIN 0.3 4.7 300
MAX 3.5 -
UNITS s s ns
NOTES
AA
BUF DH
t
t
F 0 4 4
300
ns s s s
HD:DAT HD:STA
t
HIGH
t
I 4.7
100 1 100 250 4.7 4.7 10
ns s s KHz ns s s ms 1
LOW
t
R
SCL
SU:DAT SU:STA
t
SU:STO WRC
1. The SPD EEPROM WRITE cycle time (tWRC) is the time from a valid stop condition of a write sequence to the end of the EEPROM internal erase/program cycle. During the WRITE cycle, the EEPROM bus interface circuit is disabled, SDA remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address.
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
20
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Table 22: Serial Presence-Detect Matrix
VDD = +3.3V 0.3V; "1"/"0": Serial Data, "driven to HIGH"/"driven to LOW" BYTE 0 1 2 3 4 5 6 7 8 9 DESCRIPTION NUMBER OF BYTES USED BY MICRON TOTAL NUMBER OF SPD MEMORY BYTES MEMORY TYPE NUMBER OF ROWADDRESSES NUMBER OF COLUMN ADDRESSES NUMBER OF MODULE BANKS MODULE DATA WIDTH MODULE DATA WIDTH (continued) MODULE VOLTAGE INTERFACE LEVELS SDRAM CYCLE TIME, tCK (CAS LATENCY = 3) SDRAM ACCESS FROM CLK, tAC (CAS LATENCY = 3) MODULE CONFIGURATION TYPE REFRESH RATE/TYPE SDRAM WIDTH (PRIMARY SDRAM) ERROR-CHECKING SDRAM DATA WIDTH MINIMUM CLOCK DELAY FROM BACK-TO-BACK RANDOM COLUMN ADDRESSES,tCCD BURST LENGTHS SUPPORTED NUMBER OF BANKS ONS DRAM DEVICE CAS LATENCIES SUPPORTED CS LATENCY WE LATENCY SDRAM MODULE ATTRIBUTES SDRAM DEVICE ATTRIBUTES:GENERAL SDRAM CYCLE TIME , tCK (CAS LATENCY = 2) 10 (-133/-10E) A0 SDRAMACCESSFROMCLK, tAC (CAS LATENCY = 2) SDRAM CYCLE TIME, tCK (CAS LATENCY = 1) SDRAM ACCESS FROM CLK, tAC (CAS LATENCY = 1) MINIMUM ROW PRECHARGE TIME, tRP MINIMUM ROW ACTIVE TO ROW ACTIVE, tRRD 15ns (-13E) 20ns (-133/-10E) 14ns (-13E) 15ns (-133) 20ns (-10E) 15ns (-13E) 20ns (-133/-10E) 45ns (-13E) 44ns (133) 50ns (-10E) ENTRY (VERSION) 128 256 SDRAM 13 10 1 or 2 64 0 LVTTL 7ns (-13E) 7.5ns (-133) 8ns (-10E) 5.4ns (-13E/-133) 6ns (-10E) NONPARITY 7.8125s/SELF 8 NONE 1 1, 2, 4, 8, PAGE 4 2, 3 0 0 UNBUFFERED 0E 7.5ns (13E) 10ns (-133/-10E) 5.4ns (-13E) 6ns (-133/-10E) MT8LSDT3264A(I) MT16LSDT6464A(I) 80 08 04 0D 0A 01 40 00 01 70 75 80 54 60 00 82 08 00 01 8F 04 06 01 01 00 0E 75 A0 54 60 00 00 0F 14 0E 0F 14 0F 14 2D 2C 32 80 08 04 0D 0A 02 40 00 01 70 75 80 54 60 00 82 08 00 01 8F 04 06 01 01 00 0E 75 A0 54 60 00 00 0F 14 0E 0F 14 0F 14 2D 2C 32
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
29 30
MINIMUM RAS# TO CAS# DELAY, tRCD MINIMUM RAS# PULSE WIDTH, tRAS (See note 1)
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
21
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Table 22: Serial Presence-Detect Matrix (Continued)
VDD = +3.3V 0.3V; "1"/"0": Serial Data, "driven to HIGH"/"driven to LOW" BYTE 31 32 33 34 35 36-61 62 63 DESCRIPTION MODULE BANK DENSITY COMMAND AND ADDRESS SETUP TIME, tAS, tCMS COMMAND AND ADDRESS HOLD TIME, tAH, tCMH DATA SIGNAL INPUT SETUP TIME, tDS DATA SIGNAL INPUT HOLD TIME, tDH RESERVED SPD REVISION CHECKSUM FOR BYTES 0-62 ENTRY (VERSION) 256MB 1.5ns (-13E/-133) 2ns (-10E) 0.8ns (-13E/-133) 1ns (-10E) 1.5ns (-13E/-133) 2ns (-10E) 0.8ns (-13E/-133) 1ns (-10E) REV. 1.2 (-13E) (-133) (-10E) MICRON MT8LSDT3264A(I) MT16LSDT6464A(I) 40 15 20 08 10 15 20 08 10 00 12 8B D1 19 2C FF 01 - 06 Variable Data 01-04 00 Variable Data Variable Data Variable Data 64 AF 40 15 20 08 10 15 20 08 10 00 12 8C D2 1A 2C FF 01 - 06 Variable Data 01-04 00 Variable Data Variable Data Variable Data 64 FF
64 65-71 72 73-90 91 92 93 94 95-98 99-125 126 127
NOTE:
MANUFACTURER'S JEDEC ID CODE MANUFACTURER'S JEDEC ID CODE(CONT.) MANUFACTURING LOCATION MODULE PART NUMBER (ASCII) PCB IDENTIFICATION CODE IDENTIFICATION CODE (CONT.) YEAR OF MANUFACTURE IN BCD WEEK OF MANUFACTURE IN BCD MODULE SERIAL NUMBER MANUFACTURER-SPECIFIC DATA (RSVD) SYSTEM FREQUENCY SDRAM COMPONENT & CLOCK DETAIL
0
100 MHz (-13E/ -133/-10E)
1. The value of tRAS used for -13E modules is calculated from tRC - tRP. Actual device spec. value is 37ns.
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
22
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Figure 10: 256MB Module Dimensions
STANDARD PCB
FRONT VIEW
5.256 (133.50) 5.244 (133.20) .125 (3.18) MAX
.079 (2.00) R (2X)
U1
U2
U3
U4
U6
U7
U8
U9
1.380 (35.05) 1.370 (34.80)
.118 (3.00) (2X) .118 (3.00) TYP .250 (6.35) TYP .118 (3.00) TYP 1.661 (42.18) 2.625 (66.68) .039 (1.00)R (2X) .039 (1.00) TYP .050 (1.27) TYP
U10
.700 (17.78) TYP
.128 (3.25) (2X) .118 (3.00)
.054 (1.37) .046 (1.17)
PIN 1 (PIN 85 ON BACKSIDE)
4.550 (115.57)
PIN 84 (PIN 168 ON BACKSIDE)
LOW PROFILE PCB
FRONT VIEW
5.256 (133.50) 5.244 (133.20)
.125 (3.18) MAX
.079 (2.00) R (2X)
U10
U1
U2
U3
U4
U6
U7
U8
U9 1.131 (28.73)
.700 (17.78) 1.119 (28.42) TYP
.118 (3.00) (2X) .118 (3.00) TYP .250 (6.35) TYP .118 (3.00) TYP 1.661 (42.18) 2.625 (66.68) .039 (1.00)R (2X) .039 (1.00) TYP .050 (1.27) TYP
.128 (3.25) (2X) .118 (3.00)
.054 (1.37) .046 (1.17)
PIN 1 (PIN 85 ON BACKSIDE)
4.550 (115.57)
PIN 84 (PIN 168 ON BACKSIDE)
NOTE:
All dimensions in inches (millimeters) MIN or typical where noted.
MAX
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
23
Micron Technology, Inc., reserves the right to change products or specifications without notice. (c)2002, Micron Technology Inc.
256MB / 512MB (x64) 168-PIN SDRAM DIMMs
Figure 11: 512MB Module Dimensions
STANDARD PCB
FRONT VIEW
5.256 (133.50) 5.244 (133.20) .157 (3.99) MAX
.079 (2.00) R (2X)
U1
U2
U3
U4
U6
U7
U8
U9
1.380 (35.05) 1.370 (34.80)
.118 (3.00) (2X) .118 (3.00) TYP .250 (6.35) TYP .118 (3.00) TYP 1.661 (42.18) 2.625 (66.68) .039 (1.00)R (2X) .039 (1.00) TYP .050 (1.27) TYP
U10
.700 (17.78) TYP
.128 (3.25) (2X) .118 (3.00)
.054 (1.37) .046 (1.17)
PIN 1
4.550 (115.57)
PIN 84
BACK VIEW
U11
U12
U13
U14
U16
U17
U18
U19
PIN 168
PIN 85
LOW PROFILE PCB
FRONT VIEW
5.256 (133.50) 5.244 (133.20)
.157 (3.99) MAX
.079 (2.00) R (2X)
U10
U1
U2
U3
U4
U6
U7
U8
U9 1.131 (28.73)
.700 (17.78) 1.119 (28.42) TYP
.118 (3.00) (2X) .118 (3.00) TYP .250 (6.35) TYP .118 (3.00) TYP 1.661 (42.18) 2.625 (66.68) .039 (1.00)R (2X) .039 (1.00) TYP .050 (1.27) TYP
.128 (3.25) (2X) .118 (3.00)
.054 (1.37) .046 (1.17)
PIN 1
4.550 (115.57)
PIN 84
BACK VIEW
U11
U12
U13
U14
U16
U17
U18
U19
PIN 168
PIN 85
NOTE:
All dimensions in inches (millimeters) MIN or typical where noted.
(R)
MAX
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron and the M logo are registered trademarks and the Micron logo is a trademark of Micron Technology, Inc.
32,64 Meg x 64 SDRAM DIMMs SD8_16C32_64x64AG_C.fm - Rev. C 11/02
24
(c)2002, Micron Technology Inc.


▲Up To Search▲   

 
Price & Availability of MT8LSDT3264A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X